class: center, middle, inverse, title-slide .title[ # Measuring large-scale emotion aggregates through social media text ] .author[ ### David Garcia
ETH Zurich
] .date[ ### Social Data Science ] --- layout: true <div class="my-footer"><span>David Garcia - Computational Social Science Lab - TU Graz + CSH Vienna</span></div> --- <img src="figures/earth.svg" width="950" style="display: block; margin: auto;" /> --- layout: true <div class="my-footer"><span> <a href=https://arxiv.org/abs/2107.13236> Social media emotion macroscopes reflect emotional experiences in society at large. David Garcia, Max Pellert, Jana Lasser, Hannah Metzler. https://arxiv.org/abs/2107.13236 (2021)</a></span></div> --- # Social Media Macroscopes of Emotions .pull-left[ <img src="figures/Macy.jpg" width="1100" /> <font size="5"> <a href="https://science.sciencemag.org/content/333/6051/1878/"> Diurnal and seasonal mood vary with work, sleep, and daylength across diverse cultures. Golder & Macy, Science (2011) </a> </font> ] .pull-right[ <img src="figures/hedonometer.png" width="1100" /> <font size="5"> <a href="https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0026752"> Temporal patterns of happiness and information in a global social network: Hedonometrics and Twitter. Dodds et al. PLoS One (2011) </a> </font> ] --- # Social Media Macroscopes of Emotions .pull-left[ <img src="figures/Paris.png" width="500" /> <font size="5"> <a href="https://journals.sagepub.com/doi/full/10.1177/0956797619831964"> Collective Emotions and Social Resilience in the Digital Traces After a Terrorist Attack. Garcia & Rime, Psychological Science (2019) </a> </font> ] .pull-right[ <img src="figures/COVID.png" width="1100" /> <font size="5"> <a href="https://psyarxiv.com/qejxv"> Collective Emotions During the COVID-19 Outbreak. Metzler et al. Psyarxiv (2021) </a> </font> ] --- ## Limits of Social Media Data to Study Emotion <img src="figures/Jaidka.png" width="1100" /> [Estimating geographic subjective well-being from Twitter: A comparison of dictionary and data-driven language methods. Jaidka et al. PNAS (2020)](https://www.pnas.org/content/117/19/10165.short) --- # Validating a UK emotion macroscope <img src="figures/MacroTest2.svg" width="975" style="display: block; margin: auto;" /> --- # Validating a UK emotion macroscope 1. Two years of weekly representative UK emotion survey by YouGov 2. UK Twitter data for the same period: 1.5 Billion tweets (without RT) 3. Text analysis: dictionary-based (LIWC) and supervised (RoBERTa) 4. Gender detection of twitter users based on profile 5. Gender-rescaled time series of emotional expression <img src="figures/Data.svg" width="900" style="display: block; margin: auto;" /> --- # Sadness in Twitter and YouGov <img src="figures/Sadness.svg" width="1200" style="display: block; margin: auto;" /> - Similar results with dictionary-based and supervised (r~0.65) --- # Anxiety in Twitter and YouGov <img src="figures/Anxiety.svg" width="1200" style="display: block; margin: auto;" /> - Better results with dictionary-based method and with gender rescaling - Results robust to autocorrelation and heteroskedasticity --- # Joy in Twitter and YouGov <img src="figures/Joy.svg" width="1200" style="display: block; margin: auto;" /> - Substantially better results with supervised method than dictionary-based --- # Exploring 12 emotional states .pull-left[ - Time series of number sentences like "I am [emotion]" on Twitter - Weak correlations happen for infrequent emotions in text - Comparison: US weekly pre-election polls correlate with 0.66 - Arxiv preprint at https://arxiv.org/abs/2107.13236 ] .pull-right[ <img src="figures/Figure2.svg" width="700" /> ] --- layout: true <div class="my-footer"><span> Validating daily social media macroscopes of emotions. Max Pellert, Hannah Metzler, Michael Matzenberger, David Garcia. Working Paper (2021)</span></div> --- ## Study 2: Validating an Austrian macroscope .pull-left[ - 20-day emotion survey in derstandard.at (N=268,128) - Daily frequency, 3-day windows - Text from Der Standard forum (N=452,013) - Austrian tweets (N=515,187) filtered as UK macroscope - Compared dictionary-based (LIWC) and supervised model (GS) ] .pull-right[ <img src="figures/DS1.svg" width="800" /> ] --- ## Twitter sentiment and Der Standard survey <img src="figures/DS2.svg" width="1000" style="display: block; margin: auto;" /> --- # Correlations with new COVID-19 cases .pull-left[ <img src="figures/DS31.svg" width="600" /> ] .pull-right[ <img src="figures/DS32.svg" width="600" /> ] - Do correlations attenuate due to additional social media measurement error? - Survey emotion correlation with new cases as strong as Twitter sentiment - Errors sources might be different: Need for conceptual validations --- layout: true <div class="my-footer"><span> <a href=https://arxiv.org/abs/2107.13236> Social media emotion macroscopes reflect emotional experiences in society at large. David Garcia, Max Pellert, Jana Lasser, Hannah Metzler. https://arxiv.org/abs/2107.13236 (2021)</a></span></div> --- # Social Sensing Emotions <img src="figures/socialsensing.svg" width="725" style="display: block; margin: auto;" /> 3rd person and tweet emotion: +74.85% in anx. +62.12% in sad +34.97% in pos. --- <img src="figures/summary1.svg" width="1050" style="display: block; margin: auto;" /> --- <img src="figures/summary2.svg" width="1050" style="display: block; margin: auto;" /> --- <img src="figures/summary3.svg" width="1050" style="display: block; margin: auto;" /> --- # To learn more <img src="figures/WHR.png" width="1050" style="display: block; margin: auto;" /> [**Using social media data to capture emotions before and during COVID-19.** Hannah Metzler, Max Pellert, David Garcia. World Happiness Report (2022)](https://worldhappiness.report/ed/2022/using-social-media-data-to-capture-emotions-before-and-during-covid-19/) [**Social media emotion macroscopes reflect emotional experiences in society at large.** David Garcia, Max Pellert, Jana Lasser, Hannah Metzler. Arxiv preprint (2021)](https://arxiv.org/abs/2107.13236) [**Validating daily social media macroscopes of emotions.** Max Pellert, Hannah Metzler, Michael Matzenberger, David Garcia. Scientific Reports (2022)](https://www.nature.com/articles/s41598-022-14579-y)